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1. Introduction

In the past several years a number of studies have been
made in determining the applicability of solar-electric-
propulsion (SEP) spacecraft to the unmanned scientific
investigation of the solar system.

This article presents several trajectory and spacecraft
parameters f . a solar-electric-propulsion spacecraft that
could be used as a deep-space asteroid probe. The pur-
poses of this mission would be to make: (1) an engineering
test flight of a spacecraft using electric-propulsion thrus-
tors and lightweight rollout solar panels as a power source,
ard (2) a scientific investigation of the region of the solar
system encompassing 2 to 3 AU, including the asteroid
belt. A minimum thrustor operating time of 400 days at
an initial power level of approximately 4.6 kW at 1 AU is
desired.

2. Spacecraft Description

The launch vehicle proposed for this mission is an
Atlas SLV3C/ Centaur with an injected weight capability
at escape of 2500 b, The SEP spacecraft would have a
mass of 750 b, not including the solar panels, thrustors,
and power-conditioning subsystems. The “installed” power
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capability of the solar panels proposed for this spacecrait
is 6 kW at 1 AU; however, an assumed 18% degradation
due to solar flares and enviionmental uncertainties results
in a net power capability of 4.92 kW, Of this amount,
320 W is reserved for spacecraft auxilliary purposes,
leaving a net thrustor input power at 1 AU of 4.6 kW, In
the data to be presented, a total spacecraft mass of 480 kg
was used, not including the low-thrust propellani mass.

The mission profile consists of a spacecraft injection at
a vis viva energy of C; equal to 10 to 16 kmm?/s. The space-
craft is injected so that the hyperbolic velocity is aligned
in the direction of the motion of the earth and in the
ecliptic plane. Shortly after injection, the spacecraft would
be aligned so that the SEP engines will be thrusting in a
direction normal to the sun line and in the ecliptic plane.
Since a specific target has not been identified, the selection
of a launch date at this time is soniewhat arbitrary; con-
sequently, the trajectories shown in this analysis were
initiated with an initial heliocentric longitude of zero
corresponding to a launch date late in September.

The required propellant mass, exclusive of residuals, is
shown in Fig. 1 as a function of departure C; for propul-
sion times of 400, 500, and 600 days. Since the propellant
mass flow rate is directly proportional to thrustor input
power, the mass flow rate will decrease with increasing
probe distance from the sun because of the drop in power
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Fig. 1. SEP spacecraft asteroid probe, propellant
mass versus C;

from the solar panels. The additional propellant required
for thrusting an additional 100 to 200 days is relatively
small, since the available power to the thrustors and also
the propellant flow rate has dropped to about one sixth
of the initial value after 400 to 500 days. An additional
100 days of propulsion requires, at most, 5 kg additional
propellant (Fig, 1).

3. Trajectory Characteristics

The aphelion and perihelion of the heliocentric trajec-
tory after turust cutoff is shown in Fig. 2 as a function of
departure C,. The effect of increasing the propulsion time
does not materially affect the aphelion distance since
thrust cutoff occurs near this point, and additional thrust-
ing has the effect of raising the perihelion but does not
affect the aphelion distance. The aphelion distance does
increase with increasing C;, however, and an aphelion
range of 2% to 3% AU can be covered with a departure
C, in the range of 10 to 16 km?/s2. The perihelion distance
decreases slightly with increasing C, and increases with
an increase in propulsion time.

The path of the spacecraft in the ecliptic plane is shown
in Figs. 3 and 4 for a propulsion time of 400 days and for
departure vis viva energies of 10 and 16 km?/s2, Figure 3
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Fig. 2. SEP spacecraft asteroid probe, aphelion and
perihelion distance versus C;

shows the path of the wvehicle for a departure C., of
10 km?,s*. The probe spends 250 days to 950 days beyond
2 AU with aphelion occurring at 600 days. In Fig. 4 the
path of the spacecraft for a departure C; of 16 km?*/s*
remains beyond 2 AU for 210 days to 1110 days or for a
total of 900 days as compared with the 70C days for the
trajectory shown in Fig. 3.

The power available to the thrustors is shown in Fig. 5
as a function of time along the trajectory. Because of
thrustor design considerations, it would seem inadvisable
to operate the low-thrust engines at a power level less than
around % kW. For a trajectory with a departure C, of
16 km?/s? this point occurs at about 400 days, and in order
to provide additional operating time, the motors could
be restarted at about 900 days. The second trajectory,
corresponding to a C; of 10 km?/s2, has a minimum pov-er
of % kW at aphelion.

4, Communication Parameters

Figure 6 presents the communication distance as a
function of time fcr the same ‘rajectories used previously.
A communication distance of 530 to 560 million km is
required to observe the thrust cutoff point at 400 days.
Delaying thrust cutoff until 600 days will reduce the
communication distance by about a factor of 2. An inter-
esting feature of the trajectory shown in Fig. 3 for a C;
of 10 km?/s? is that it is close to being synchronous with
the period of the earth—quite close to 3 yr. Opposition
with the earth occurs close to aphelion and perihelion of
the spacecraft trajectory.
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Fie. 5. SEP spacecraft asterid probe thrustor input power
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Fig. 6. SEP spacecraft asteroid probe communication
distance veisus time

The antenna direction, given by the earth-probe-sun
angle, is shown in Fig. 7 as a function of time. Ex~luding
the initial 60 to 70 days, a maximum antenna direction
from the sun line of not more than 35 deg is required for
the duration of the mission. Initially this angle is around
90 deg as the probe recedes from the earth in the direction
of the motion of the earth. At the point where the earth-
probe-sun angle has decreased to 35 deg, the communi-
cation distance is around 15 million km.

B. Progress Toward a Numerically Integrated
Lunar Ephemeris, D. B. Holdridge and J. D. Mulholland

For the past year it has been evident that the high
accuracy required of the lunar ephemeris, if it is to
achieve maximum utility in the analysis of spacecraft data,
can be obtained at the present time only by numerical
integration of the equations of motion (Ref. 1). The imple-
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Fig. 7. SEP spacecraft asteroid probe earth-probe-sun angle

mentation of such an ephemeris has been pursued in two
conceptually distinct, but complementary, phases.

1. Numerical Fit to Theory

The work that was reported in Ref. 1 and in SPS 37-49,
Vol. I1I, pp. 13-15, consisted of a single-body integration
of the lunar orbit over a 2-yr interval, differentially cor-
rected to fit the theory-based ephemeris designated LE 4
(Ref. 2) by means of a modified version of the planetary
orbit determination program (PLOD; Ref. 3). After it was
established that serious defects existed in the theoretical
ephemeris, an effort was mounted for the extension of
this work to a meaningful time span. To properly treat
the long-term characteristics of the motion, the nodal
period (18.6 yr) may be regarded as a practical minimum
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interval over which to extend the differential correction
procedure. The interval actually adopted was from JED
243 3280.5 to 244 0800.5, slightly more than 20 yr, begin-
ning at the epoch of the JPL ephemeris tape system,

There are several arguments in favor of producing
acceptable fits to the theoretical ephemeris as a prior
step to dealing with the observations. The most cogent
one in the early stages of the work was the ease and
rapidity with which the PLOD program could be modi-
fied to perform this task. At present, it is far more impor-
tant that this process can be regarded as a controlled
experiment that will permit the development of tech-
niques for solving the real problems of fitting the lunar
motion without introducing the uncertainties and biases
that always accompany observational data. Despite its
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flaws, the Lunar Theory does conform rather well to the
real motion of the moon, particularly in those features
that are a hindrance to the production of an accurate
ephemeris py numerical integration, These features pri-
marily affect two aspects: (1) the differential correction
and, (2) the modeling of effects that arise from other than
point-mass gravitational considerations.

The moon is a highly perturbed object, and the stan "ard
differential correction procedures used in PLOD, as in
other planctary ephcmeris development programs, are
based on formulas that assume Keplerian motion. This is
acceptable in the planetary case, because the planets are
remarkably well behaved. In the attempts to extend the
correction span beyond 2 yr, the suspicion was amply con-
firmed that the unperturbed partial derivatives are not
adequate in the lunar case. Successive corrections for a
series of 5-yr integrations failed to converge to a final set
of initial conditions.

The possible ways in which cne cculd produce per-
turbed partial derivatives were discussed in an earlier
article (SPS 37-51, Vol. II1, pp. 13-15), and a detailed dis-
cussion was given of the implementation of one of the
elternatives, that of analitic series expressions. Subse-
quent to the writing of that article, discussions? revealed
that the expressions for ad5/0a referred only to the scale
factor effect and did not include the dynamical effect
(Ref. 4, p. 235) involving the angular motion. It would
become necessary to introduce this effect into the compu-
tation of [9ke/¢x:], and much of the estimated saving in
computer running time would have disappeared, in addi-
tion to the programming effort that this approach would
have entailed. As a consequence, the relatively simple
method of finite difference quotients was eventually used
for the partial derivative computations.

The availability of reasonably accurate partial deriva-
tives resolved the differential correction problem, and
within a relatively short time a converged series of inte-
grated fits over the 20-yr span was obtained, the source
theory heing LE 6 (Ref. 5). Although the correction series
did converge to a final solution, the residuals of that solu-
tion were not really satisfactory, and the reason for this
situation is believed to lie in the modeling problem.

The major flaw in using a theory as the comparison
base for a numerical integration is the possibility that
empirical adjustments to the theory may destroy the faith-

'With T. C. Van Flandern, U.S. Naval Observatory, who developed
the analytic partial derivatives,
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fulness with which it reflects the nominal model on which
it was constructed. In the case of the Lunar Theory and
our irtegrations, the tides, the figure of the moon, and
perhaps some yet unknown cause have led to such adjust-
ments. In each case, analysis of the observational data
showed one or more of the orbital parameters to be inade-
quately represented by the theory, and in each case the
theoretical expressions were replaced by the observa-
tional values. The numerical integrations are based on
gravitational models not greatly different from that on
which the theory is founded, so one would not expect
these empirical aspects of the theory to be properly
modeled in the integration. It is necessary either to learn
how to model them or how to handle such empirical fixes
in conjunction with a numerical integration.

Such a component in the lunar motion is attributed to
the frictional losses in the tidal deformations oi earth.
These losses reduce the rotational angular momentum of
earth, with subsequent gain in the orbital angular momen-
tum of moon. This gain is reflected in a secular increase
in the mean distance and decrease in the sidereal mean
motior. This is represented as a secular acceleration of
the mean longitude

AL = —11722 T

where T is measured in Julian centuries. There is less than
complete agreement on the detailed mechanism of this
angular momentum transfer, but it is widely assumed
(e.g., Ref. 6) that it involves the gravitational couple gen-
erated by the tidal bulge. Whatever the mechanism, it is
not modeled in the differential equations of motion, and
a means must be found of treating the real phenomenon,

Both the perigee and the node have motions that arise
from unmodeled causes. The current ephemeris programs
treat the moon as a point of mass, whereas the Brown
theory embodies a triaxial moon not greatly different from
the one currently recommended. The solar system data-
processing system is to be modified to include this feature,
but in the interim, it is necessary to find an empirical way
of treating the motions. Such an empirical treatment is
necessary from another aspect, too. Eckert (Ref. 7) has
shown that the present observational values of da/dT
and dQ /dT cannot be satisfied with the present model
without assuming an unbelievable lunar density distribu-
tion. That is, the perigee and node have motions that
cannot be modeled in the light of present knowledge.
These last two effects combined amount to

Ag = —371T, AQ = —-27'9T
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There seems to be no simple resolution of this within the
structure of PLOD,

As a means of discovering if these various effects are
the cause of the remaining large-scale residuals in the
PLOD integrations of the lunar motion, a theoretical
ephemeris (LE 12) has been constructed by removing the
gravitationally unmodeled effects from LE 6. Numerical
integrations fit to this ephemeris are now under way.

2. Use of Lunar Observations

In the long run the fitting of theories must be aban-
doned, and one must return to the source of all empirical
knowledge—the obscrvations. The modifications neces-
sary to convert the solar system data-processing system
(SPS 37-51, Vol. 111, pp. 4-12, o lunar application are
now being programmed. Many gains ave expected from
*his. The figure or the moon can be modeled: perhaps the
tidal effect can be modeled. It may even be that the unex-
plained defect of the theory noted above is not due to
the fgzure of the moon at all, but to the currently accepted
observational values. A recent analysis of the occultation
observations® seems to suggest that this is a possibility.
If so, this discrepancy should disappear with the use of
observational data,

*Martin, C. F., “ET-UT Time Corrections for the Period 1627-
1860),” in Observation, Analysis and Space Research Applications
of the Lunar Motion, Edited by J. 17, Mulholland (in preparation).
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C. Effect of Precession and Nutation Errors
on Radar Observations, J. H. Lieske

The partial derivatives relating errors in the constant
of general precession in longitude and the constant of
nutation to changes in range and range rate are devel-
oped in this article. It will be shown that an error on the
order of 1 arc sec/century in the general precession in
longitude will introduce drifts on the order of 30 m/cen-
tury in range and 2 mm/s/century in range rate. The
effect preLably will be absorbed by station longitude and
would amount to a drift on the order of 1/3 m/yr. Errors
in the constant of nutation, on the other hand, introduce
effects on the order of 600 mm and 0.04 mm/s on the
range and range rate, respectively, for an error in the
coefficient of nutation of 0.01 arc sec. The partial deriva-
tives will be developed in an equatorial 1950.0 fram.e, and
simplified expressions adequate for most purposes will be
given.

In the present investigation it is assumed that the vee-
tor p from the observer to the object being tracked is
given by the expression

p=r— R, — ATAZR; (1)

where r and R, are the heliocentric vectors to the object
and to the center of the earth referred to the equator and
equinox of 1950.0, respectively, and AZATRs is the vec-
tor from the geocenter to the observer in a 1950.0 frame.
The iranspose of a matrix A is denoted by A”. The pre-
cession matrix Ap and nutation matrix Ay are given by
the usual expressions (Ref. 1)

~-sin {, cos 0 cos z — cos {ysin z —sin f cos z
—sin &, cos @ sinz + cos ¢, cos 2 —sinfsinz (2)
—sin ¢, sin § cos 6




"cos Ay —cos €sin Ay —sin Ay sin€

Ay =]sinAycose COS Ay COS €COS € 4~ sin€sine Cos Ay sin€cos € — cosesine (3)

sin Ag sin € cos Ay cos €sin € — sin€cos € cos Ay sin€sin € + cos €cos €

where ¢, z, and 0 are the precession parameters employed
in reducing positions referred to the mean equator and
equinox of 1950.0 to the mean equator and equinox of

date, where Ay is the nutation in longitude, and € and €

refer to the true and mean obliquily of the ecliptic of
date, respectively. The geocentric position of the observer
referred to the true equator and equinox of date is as-
sumed to be in the form

cos 8, —sin 8 0
R,\' = Sin 0(,' CcOos 0(,' 0 S (4)
0 0 1

where €, is the true Greenwich sidereal time, ana

“Hocos ¢’ cos Ag’
S =| Rocos ¢’ sin Ay (5)
R, sin ¢’

with R, representing the geocentric distance of the ob-
server; ¢’, his geocentric latitude, and Mg, the observer’s
longitude measured east from Greenwich,

An important and useful property of these orthogonal
rotation matrices is that if A is a rotation matrix, or the
matrix product of several orthogonal matrices, and if ¢
is a parameter upon which one or several of the matrices
depend, then the matrix

SAT
C—'O;A_‘A T

is skew-symmetric, or the sum of several skew-symmetric
matrices, and hence the quadratic form

B = x" Cx (6)

is zero for any vector x. This property is useful in obtain-
ing the partial derivative of the scalar slant range 9p/0q
from the vectors p and 0p/dq. As an example, consider
the contribution of 9p/3q to the desired quantity 9p/9q.

If A\ and A, depend upon the parameter g, then

% .. ("A" AT AL (A1>P\\-
°q &g " 2q ’

(I)

P = = (r — R. — ALATR,)?
R (“" AT+ AL )R
+ R7Ay A,——%—A R« + RTAy qA‘ Re.

The skew-symmetric property may be used to show that
the last two terms in the above equation ure zero because

cAl
oq

A,

is skew-symmetric, as is

Fi
A,\( “A") Al
oq

Hence, the quadratic form

AL .,
RZ (A Ap—— 3 Al )R\
is zero. The same comments apply for

(/A.v

RIAy——
oq

Since there are several forms one may wish to employ
for the computed range or doppler, the skew-symmetric
property will be extremely useful in computing the vari-
ous forms. In the remainder of this paper only the vector
partial derivatives 0p/dq and 9p/dq will be computed,
so that a person may combine them in whatever type of
range or doppler equation he desires,

vOL.

JPL SPACE PROGRAMS SUMMARY 37-54,



It is clear that the heliocentric positions r of the planct
and R, of the earth referred to the 1950.0 equator and
cquinox will not depend upon the values of precession
and nc.iation (although their estimated values certainly
are al":cted to some extent). We thus need only be con-
cerned with the effect of precession and nutation on A,
A, and R of the observer. The observer’s geocentric
position Ry is affected by precession and nutation only
through the sidereal time, as indicated by Eq. (4). The
true Greenwich sidereal time 04 is of the form

0 = 0y + Ay cose + 8 (7)

where A, is the mean Greenwich sidereal time and §
includes the effects of polar motion, annual periodic vari-
ations, etc. While it is true that the oxigin of the definition
of mean Greenwich sidereal time 8, involved introducing
a specific value of the genera) precession in right ascen-
sion, the expression for 0, is now to be taken as a defi-
nition of the universal time; hence f; will not be affected
by any error in precession, since it is defined as the
Greenwich hour angle of the mean eqinox of date. We
then see that the true <idereal time is affected by nutation
but not precession.

The partial derivatives of &, 2, and ¢ appearing in
Eq. (2) with respect to the general precession in longitude
p are taken from Lieske (Ref. 2):

%o L% 0458917 = L cose,
poCp 2
(8)
80
87 = 0.39780T = T'sine,

where T is measured in tropical centuries from 1950.0,
and €15 the mean obliquity of the ecliptic at 1950.0, The
nutation in obliquity is assumed to be of the form

A€ =¢— €= N cos Q« (9)
while the nutation in longitude is taken as
Ay = —y Nsin o (10)

where N = 97210, y = 1.8712 (so that —yN = —177234)
and where Q( is the node of the orbit of the moon on the
mean ecliptic of date.
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The partial derivatives required for general precession
in longitude are

p AL,
p p ARy (11)

while those for nutation are

tp CAL Ry
_':ﬁ -o- - A'l" (j‘[‘ l-l\ A;;A\ ',\_N—" (13)
of aA‘ R,
N Aray R AJALS
‘\Al ‘\Al
<A; AN + Al N)R"

LR\

(A,’.AT + A}".AT> N (14)

The matrices Ap, Ay, and Ry are already defined in
Egs. (2), (3), (4) and (5), and their partial derivatives
may be readily computed. Simplified forms, adequate for
most purposes, will be given later. The complete forms
will be given in order that one may employ the more
exact relations if he so desires.

The matrix 2A,/0p is determined from

041- E)Ap ?.él C’A[' (Z Eé_c Q (15
op TS op oz fp co ep )
where
% i
op’ op’ op

are given by Eq. (8).

The partial derivative of the nutation matrix Ay with
respect to the constant of nutation N is given by

0A > , 0Ay
SN = T Ysin ¢ (A¢)+cosa( % (16)
where y = 1.8712.
9
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Before computing the partial derivatives of p and p
with respeet to p and N we still need @Re/eN. The re-
quired relation is found by combining Eqgs. (4), (7), and
(10). The result is

By Ry
N ysin Q¢ coseﬁ(}(

(17)

From Egs. (11) to (14) combined with Eqgs. (8) and (15)
to (17) one can then obtain 2p/op, 2p/2p, dp/eN, and
2p/8N. However, an examination of the maximum effect
of each of the terms in Eqs. (11) through (14) upon p
and p shows that several of the matrices may be neglected,
and others may be simplified. In estimating the cffects of
the terms upon Ap and Ap, it is assumed that the error
in general precession in longitude is approximately 1 arc
sec per century (Refs. 3, 4) while that in the nutation
coefficient is 0.01 arc sec (Ref. 5).

The effects of Ap = 1 arc sec per century on p and p
are approximately:

For Ap
m;" AL Ry Ap ~ 30 m/century
and for Ap
o

ap" Al Ry Ap ~ 2mm/s/century

2A”
-81;_ AL ReAp ~ 3 X 107" mm/s/century

oAl .
—= A} RyAp ~ 1 X 10-" mm/s/century

while the effects of AN = 0701 upon p and p are approxi-
mately:

For Ap
AT
A} aNV Rs AN ~ 600 mm
ALAT = ;ﬁf AN ~ 600 mm
10

and for Ap

‘ T
AL BY ROAN ~ 4 X 10 mmys
(
A'A( ‘N “AN ~ 4 X 10 *mm/s
CA%
A,’ N Y R¢AN ~ 5 X 10 mm,s
A,’ “N R AN ~ 1 X 10 *mm/s
A’A{ ﬁN — AN ~ 5 X 10 mm/s
A’A"\—%_\Nﬂul X 10" mm/s

In light of the preceding estimates, we may neglect the
terms in parentheses in Eqgs. (11) through (14) and may
use only the largest terms in the remaining matrices, With
these simplifications the partial derivatives for precession
reduce to

3p
B
(18)
P
’a_p“ - Cp B\
where
0 —~Tcose, —Tsine,
Cp=1| Tcose, 0 ' 0
T sine, 0 0

and where T is the time in centuries from 1950.0, and ¢,
is the obliquity of the ecliptic at 1950.0.

The simplified expressions for the partial derivatives
with respect to the constant of nutation are

P _
o~ COnS
P _; Cy
N = S (19)
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where

0 0 vsinesin -
Cy = 0 0 -CoS §¢
- ysinesin Q:c0s 0, - sinflycos 22, ysinesin O-sinf, - cosf, cos ¢ 0

and where 4,; may be taken as 2= rad 86,400 s with sufficient accuracy.

For most applications, Eqs. (18) and (19) will be adequate for representation of the effects of errors in precession and
nutation upon g and p. If higher precision is desired, one may use the actual matrices such as 7A, pand A, 7N,

With the above apvroximations, it is scen that the expression for ¢p 7p is of the form

0

&
— = p"| Tcose
Pep P !

T sin €,

--T cose, -Tsine,

0 R. (20)

while the partial derivative of the slant range with respect to the observer’s longitude is of the form

0
, ;’) _ 7 .
Pone P 1

0

41
0 0 | R (21)
0

and the partial derivative with respect to the observer’s latitude is of the form

0 0 cos (0.; -+ Ap)
N
p'g“;,-‘ =pT 0 0 sin (0 + As) | Ry (22)
== COos (0(; + /\s) ~~§in (0:) -t /\f;) 0

Comparing Eq. (20) with Eqgs. (21) and (22) it appears
that the observing station’s longitude aud latitude will
both be affected by errors in precession. If a drift on the
order of 1/3 m/yr is significant, then the effect of pre-
cession should be considered in ustimating station coordi-
nates.
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D. Behavior of a Clock Moving Radially in a
Centrally Symmetric Gravitational Field,
H. Lass and P. Gottlieb

In a similarly titled paper by R. F. Polishchuk
(Ref. 1) the proper time for a test particle moving in a
Schwarzchild field under the action of external fields is
determined. It is shown that, under certain circumstances,
the proper time for the moving objeet when it returns to
its point of departure will exceed the proper time for the
object remaining at rest at the point of departure. How-
ever, as we will subsequently show, there is a funda-
mental error in Polishchuk’s paper. "We will determine,
with the proper analysis, that the readings of a moving
clock may be less than or may exceed the readings of a
stationary clock remaining at the point of departure.

We begin with an analysis of the geodesics (motion of

a test particle) associated with the Riemannian metric
given by

ds* = gag dx® daf (1)

The geodesies are given by

Sut  dxf

Sut ;o dy dy
§s st

I, — e =
*ds  ds 0 (@)
with ui = dxi/ds, and 81 /85 the intrinsic derivative.

If external forces are applied, the cquations of moiion
are given by

o= ©
with Fi a 4-veotor, the external force.

Defining u; == gi,0f yields

at dxt dx!
Gt =gy —— =
! B 0s ds

along any path, by virtue of ¥q. (1). From Eq. (3) we have

Sut 1 8
222 () = F o=
" = 5 5 (nauhy = u;F' =0 4)

so that the cemponents F',{ = 1,2, 3,4, are not indepen-
dent, as assumed by Polishchuk,

12

Let us now turn to the Schwarzchiid line element

dst = ¢t (1 - 2(',“1
oir

)d:v (1 -29'_‘”> i
! c-r

= rE{dy + sin® 0 dg?) (5)

For pure radial motion, d0

M 2GA
dst == ¢ (] - 2{(: ) de: (1 '{:.

) ) dr (6)

dep - 0, and

From Eq. (4) it follows that

2GM It 2GMN\
(] - 2(,, “)CiT—Fp‘ <] . > —LFr:
cr s cir dy

(7)
with ' - I" .- F,,
Eq. (3), with
! ds s
Hecomes
2GM dr
S ew dede L &
“ st 3GM dsCds T T 2GM\® _dt
]. T > ]_ - - C__.
e ctr ds
(8)

Now suppose that the test particle is located at r =,
with dr/ds = 0. We apply an external radial force

[ cr

which is sufficient to overcome gravity, so that the pasticle
begins to accelerate outward (F, > 0, F, a constant).

With this value of F,, Eq. (8) yields a first integral

Fo _GM
iy 2 wra)
ds) = (1_ 2GM)‘-' )

c’r
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To find the radial motivn one eliminates dt between
Egs. (6) and (9) to obtain

dr ZF.,
(%) =z —(r—1r.) (10)
with
dr
;I— =0 fOI‘ r

The proper time for the particle to move from r, to
rl > rn iS

_fds 1 frooodr 20— )
Tt = / ¢ (2F.)": ] (r—r)e F.
(11)

which is equivalent to the Newtonian time.

Let us now choose 1, such that if the thrust F, were
removed, the particle would have escape velocity at this
point. We note that for a free particle

&
2GM dt
c (1 — ) s = k = constant (12)
is a first integral. From Eq. (6) we obtain
k 1 dr\?
'T oM [ oM (EE) (13)

cr cir

With dr/ds = 0 at r = 0 we obtain k = 1, so that

(g el
ds] ¢

At r =1y, Eq. (10) yields

GM

Fo=—F———
(11— 1)

(14)

which yields the value of F, for a given #, in order that
the test particle reach r, with escape velocity.

The proper time for the particle to coast from 7, to
1, >1 s

o f ds (2GM)”2 f Ok
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(2GM)1/ 3@aays 0 1)

(15)

At r. we apply a radial thrust given by

F, GM
— t—==
¢t et

until the particle comes to rest at r, > r.. As in the previ-
ous analysis it is quite simple to show that the proper
time for the particle to travel from 7, to r, is

2(ra — 1) 7)"
Tag — [Lﬁ*——l] (16)
1
with
GM
Fl N Ty ("3 - 7'2)

The return journey of the test particle is accomplished
in the same fashion as its outward journey. The reading
of the moving clock for the entire journey is given by

=2 [(éx[)lé(rl — 7o) F % (-Gzﬂyé(rg/? — 73/2)
+ (GM) (rs = 2)] ;

In order to compute the proper time for the journey as
viewed by the stationary observer, we must compute the
coordinate time T for the journey. The proper time will be
given by

(17)

1%
T = (1 - 2(.;M) T (18)

ciry

To compute the coordinate time for the journey from
7o to 7, we eliminate ds between Egs. (6) and (10). This
yields

(1 + [21?0 (1) — 5'%”1])
dt = ="—dr

AGM\ %
[zFo (7' — To) (1 — —011_)] ’

Neglecting terms of the order 1/c* and higher yields

(19)

<[ <"-ro>'é+c—fl-<r—ro>~%]} i

dt =

(20)

13
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An integration from r, to 1, yields the coordinate time

. 2’.1 15 o l
Ty = (GM) (1, — 1) + p
1 /2GM
<[s(5) e
AL 4o o W\ 1 o a \ 14
+ <2GAI717‘(T1 7||)> z tan-! (71 - 7(1) j| (21)
4 [

We note for ¢ = w0, that T,

= 741, as expected.

During the coast period from r, to 7, we have
dr\* _ 2GM
ds cir

Eliminating ds* from Eq. (6) yields

1 (ndr 1 wiof + L 2GMYN

= Gaye | 2GM ~ G (e L+ o ) i
cir

(22)

A simple integration yields the coordinate time for this
part of the journey, given by

1/ 2 \%
_ = /2 gd/2
Tl? 3 <GM) (’:: 11 )

rZeamp - @)

Neglecting 1/¢* terms, etc., the coordinate time during
the deceleration period from r, to 75, can be shown to be

(2 N%, .y L (2GM\%,
sz_(GM) (rs 7z)+302( . ) (ra — 12)

LGl n)y,

(rs)'e + (15 — 1)

i

2 (rfF = (s = 1%
(24)

The total coordinate time for the trip is
T = 2( 01 :' T]g + T23) (25)

and the proper time for the trip as noted by the stationary
observer is

%
T’=T(1—26—(§r1\1> "zT(1 - GM) (26)
0

Yy
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It is then a simple matter to show within the order of
1,¢* terms that

ro — 31y

o ¢
T — 2 ) oA NS (e — i
T 7= = {(_GM) i (ry — 1) < TR >

, ty — 3"‘.‘
+ (QGM)*% (ry — 1) (3)'(. (1'»)'1')

T+ @GM) (1) — ()]
X :2- %l—l(r1 + 7y o+ (,-1,~2)1,4J (27)
+ MMJ e <r1 - 1‘.,)’/‘:

L To T
[F ] =

The last expression in Eq. (27) shows that for 7, > > r,
one has T” > 7, and the reading of the moving clock will
be less than the reading of the stationary clock.

On the other hand, if #,=~r, and r, = r,, the middle
term of Eq. (27) shows that T’ < 7 for #, > >, > 7. Thus,
if the coasting period is of long duration compared to the
acceleration periods, the reading of the moving clock will
be greater than the reading of the stationary clock. In
order that one can coast for a considerable distance one
must reach 7, at escape velocity. The long coasting pcriod
as well as the red shift for the stationary observer yields
T’ < 7, a result opposite to that of the special relativity
effect wherein T” > 7.
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E. A Simulated Least Squares Solution for
Parameters of the Mariner Mars 1969
Encounter Orbit, J. D. Anderson

The purpose of this article is to establish the need for
rang': data from the viewpoint of the Mariner Mars 1969
celestial mechanics experiment, This has been done before
(SPS 37-44, Vol. IV, pp. 4-8 and SPS 37-47, Vol. III,
pp. 1-7) for data in both the cruise and encounter phases
of the mission. The basic conclusion of these earlier
studies is that range data aid in the improvement of the
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mass and geocentric position of Mars, particularly when
the cooling gas venting from the infrared spectrometer is
taken into account.

Recently a shorter interval of data during the encounter
phasc of the mission has been simulated (from E — 3.5
days to E + 3.5 days), and the effect of adding or deleting
Mars DSS range data from a least squares encounter solu-
tion has been studied. Doppler data have been simu-
lated at a 15-min sample interval with an accuracy of
+0.395 mm ‘s and have been assumed available on a con-
tinuous basis except for a period of about 32%2 min during
earth occultation. Results of this recent study are given in
Table 1.

Table 1. Comparison of standard errors for simulated
Mariner Mars 1969 encounter solutions with and
without range data

Parameter A priori Range and Doppler
error doppler cnly

X, km 10" 3.49 421

Y, km 10" 8.31 17.00

Z, km 10" 19.32 24.29

DX, mm/s 10° 1.1 13.5

DY, mm/s 10° 26.2 33.5

DZ, mm/s 10° 26.2 335

Tpgem 10° 27.6 8014

fogrmm/s 10’ 68.2 92,6

m ;. ppm 1960 274 37.3

Ra, m 1.0 0.46 0.49

A+, deg 30X 10° 56 X 10° 8.4 X 10°

Riz, m 1.0 0.67 0.48

A1z, deg 30 X10° 6.3 X 10 9.1 X 107

The parameters of the solution are given in column 1
in terms of the geocentric position and velocity (X,Y,Z,
DX, DY,DZ) of the spacecraft at E — 3% days, the geo-
centric range 3, and range rate iq; of the center of
mass of Mars, the mass of Maxrs m (error units are in
parts per million), and the geocentricadii and longitudes
of Johannesburg and Echo DSSs which were used in the
simulation of the doppler data. The assumed a priori
errors on these parameters are given in column 2, and the
standard errors from a doppler-only solution are given in
column 4, In column 3 the effect on the standard errors
from the addition of Mars DSS range data is given. As
with the doppler data, range data were sampled once
every 15 min and were assumed to have a standard error
of 100 m in one-way range.

Results obtained from Table 1 are qualitatively similar

to the earlier studies. Perhaps the most important con-
clusion is that range data are absolutely necessary to

JPL SPACE PROGRAMS SUMMARY 37-54, VvOL. Il

determine the geocentric distance to Mars at planctary
encounter, Studies by Curkendall and McReynolds (Ref. 1)
arc consistent with this conclusion. By looking at Fig. 8 in
their paper, it can be concluded that at the Mariner
Mars 1969 encounter the geometry is not favorable for
determining range to the spacecraft from doppler data
alone. A major objective of the celestial mechanics experi-
ment is to obtain a good range measur ment at encounter
and then to compare it with anticipated radar bounce
measurements from Mars to determine the physical size
of the planet.
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F. Computational Accuracy of Square-Root
Filtering, P. Dyer and S. R. McReynolds

1. Introduction

Two approaches to square root filtering have emerged
recently. One, an approach formulated by Potter (Ref. 1),
is based on the computation of the square root of the
covariance matrix. The other approach, suggested by
Businger and Golub (Ref. 2), relies on the computation
of the square root of the information matrix, and involves
the application of Householder transformations (Ref. 3).

Both algorithms were described for systems with uncor-
related measurements and without process noise, although
Bellantoni and Dodge (Ref. 4) and Andrew (Ref. 5) have
extended Potter’s algorithm to incorporate correlated mea-
surements, Recently the authors extended both algorithms
to include the effects of process noise.

The classical approach to sequential filtering for systems
with process noise is due to Kalman (Ref. 6). Unfortu-
nately, the computation of the Kalman filter is vulnerable
to numerical errors, which often results in a computed
covariance matrix which is nonpositive. The main advan-
tage of the square root algorithms is that a greater pre-
cision is retained. Thus the range of effective observability
is extended; that is, more poorly observed variables may
be estimated. This property will be illustrated in an ex-
ample, the estimation of the position of a space probe
from doppler measurements. It is also possible to reformu-
late th basic Kalman filter algorithm to reduce numeri-
cal errors (Ref. 7); however, the square-root filters are
superior.
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2. The Problem
Consider a system described by the transition ecuations

x(k+1)=F(x)x(k)+ G k) w(k) k-—1.2 - N

(0

where

x(k) =[x, (k),x. (K), © - - L x, (R)]
is the state of the system, and

w k) = [wi (k),w,(k), - -, w, (k)]

is the process noise at the kth epoch. The matrices F and
G are n X n. The measurements at the kth cpoch are
denoted by

z(k) = [z, (k),z.(k), - - -z, (R)]

where

The measurement noise is deroted by

v(k) = [vi (K}, e (), - - -, v, (K)]

The matrix H is # X nand Q is r 3 r. It is assumed that all
the measurements are noisy, i.c., the matrix Q has full rank.

The components of w and v are assumed to be statis-
tically independent and gaussian, with zero means and
unit variances. This assumption is not restrictive, because
any set of correlated gaussian random variables may be
linearly transformed to a new set of independent gaussian
random variables. One technique which effects this trans-
formation is as follows. Let w (k) denote correlated process
noise with covariance C (k). Now employing the Cholesky
square root algorithm (Ref. 8) a matrix D (k) is found
such that

C(k)=D (k) D (k)"
Equation (1) may now be written
x(k+ 1) = F (k) x (k) + G (k) D (k) w (k)

where the components of w (k) are independent random
parameters with zero mean and unit covariance.

The problem of estimating x (k) is equivalent to mini-
mizing J (k), where,

16

1

T =D Cv @+ W) xR A

t 1

subject to the constraints of Eqs. (1) and (2). In Eq. (3)

X (1) = a priori mean of x(1)

A1) - a priori covariance of x(1).

3. Square-Root Filters
Let J... (k) denote the miniizaum return fanction® for
this problem expressed in terms of x (k). Then

Lot (k) = ix(k) =% (k)" = A7 (k) = 12 (k) (4)

Here
X (k) = the conditional mean of x (k)
and
A (k) = the conditional covariance

1 (k) = sum of the squares of the residuals

The solution to the filtering problem is provided once
Jont (k) is computed.

The Kalman filter computes J.,¢ (k) by computing .\ (k)
and % (k). However, the square root filter based on the
Householder transformation computes R (k) and d (k)
where

R(k) = A% (k)

= 6y
d(k) = A2 (R)% (k)

F

/

In terms of R (k) and d (k), the return [, (k) is given by //

Jope (k) = ||R (k) x (k) — d (K)||* + r* (k) (6)
Clearly X (k) and A (k) are given by

%(k) = R (k) d (k)

A(k) = R (KR (R @

The Potter square root filter computes X (k) and S (k),
where

S (k) = A (k)

*See Ref. 9 for the formulation of sequential estimation in terms of
dynamic programming,
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ie., A(k) = S(k)S (k). Thus
S(k) = (R" (k)

a. Application of the algorithm, While it is very easy
to illustrate the numerical advantages of the procedure
with a simple example, it is not so straightforward with
a practical example. This is because in such a case, the
true solution is generally unknown. We will, therefore,
first consider a simple example which may be solved with
a least-squares approach.

Example 1'

Consider a system of two unknowns X (1) and X (2) and
three measurements Z (1), Z(2), and Z(3). The relevant
measurement matrix H, is chosen to be

1 1
H = 1 1 (8)
1 1+4e

and the noise matrix Q equals the unit matrix. By varying
the parameter e the conditioning of the matrix H"H may
be controlled. Now if the measurements are chosen to be
(1,1,1], the solution is,

X)) =1

9

X@2)=0 ®)

The solutions obtained via a double-precision least
squares program are compared with that given by the
Householder square root algorithm in Table 2,° which
vividly demonstrates the inaccuracies of the least squares

*This example was shown to the authors by R. Hanson.

*The Potter algorithm could not be used here as there was no
a priori information.

approach, With the new algorithm, a correct solution is
obtained until ¢ = 10''. One of the features of the pro-
gram is that a solution of minimum euclidean length is
generated when the system has less than full rank. This
property is illustrated by the last rows of the table.

Example 2

The second example is concerned with the orbit deter-
mination of a space probe using range-rate measurements.
It is characterized by a great disparity in the observability
of different components of the state and hence is an ideal
problem with which to illustrate the properties of the vari-
ous estimation algorithms.

The coordinate system used is shown in Fig. 8 where
X Y 7 X, Y,, and Z, represent the position and

/- PROBE PATH

AY
N\

(XP(O), Y0 Z, (o))

X = o sin wt cos &

X = wr_cos wt cos §
s s (¢

0

Y. = -r_cos wt Y = wr sinwt

5 s s s
Zs = =1 sinwt sin 80 Zs = wr cos wt sin 80
WHERE 80 = 0,34, AND = 5212

Fig. 8. Coordinate system

N

Table 2. Relative accuracy, Example 1

Value Least squares Orthogonal Transformation
e xa) X(2) x0) X (2)
107 1.000000000000000 —0.0000000000000568 0.9999999999999995 0.0000000000000004
107 1.000000000010914 -0.0000000000109139 1.000000000000000 0,0000000000000000
10 1.000000000465661 —0.0000000009313226 1.000000000000000 0.0000000000000000
10° 1.000007629394531 ~0.0000038146972656 0.9999999999999997 0.0000000000000002
107 1.062500000000000 ~-0.0625000000000000 0.9999999999999996 0,0000000000000003
10 1,000000000000000 --1,000000000000000 0.9999999999999996 0.0000000000000004
10" 1.0 ~1.0 0.9999999999999997 0.0000000000000002
107" 1.0 —0.5 0.4999999999999995 0.4999999999999995
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velocity of the probe, and X, Y, Z;, X, )"s, and Z, denote
the position and velocity of the tracking station. The
doppler, or range-rate measurement, p is a measure of
the velocity along the line from the tracking station to the
space probe, i.e.,

. X
PRV
where X and V are the vectors.
Xp - Xx )'(p - Xs
X=| Y,—Y, v=| Y,-Y,
Zp - Zs Zp - Z.v

Thus the required partial derivatives relating to the
state of thie probe and the data are given by

% _ X() .

wvaE 1 i=123

% V0 uX®
X6 - " =123

where the radius
r=[X (1) + X (2)* + X (3)?]%
and the velocity along the radius

u=[XHVD) X2V +XB)V3)I/r

Simple straight-line motion relative to the earth’s center
was assumed for the probe, i.e.,

where the initial state was assumed to be
X, (1) = 108km
X,(2)=X,(3)=0
Vo(1)=V,(8) =0
V,(2) = 10km/s

18

It was also assumed that the probe was tracked for two
12-h passes with a 12-h break in che middle while the
tracking station was hidden from the probe. Measure-
ments were taken once a minute. The numerical condi-
tioning of the system was adjusted by the choice of the
a priori covariance; increasing the covariance worsened
the conditioning. The measurement noise was assumed to
have a variance of 10-** (km/s)®.

First several cases were chosen to compare the accu-
racy of the various filters without process noise. Kalman,
Angstron-Koepcke-Tung, Potter, and ouscholder filters
were tried with various @ priori matrices. The a priori
matrices were unit matrices multiplied by 10, 102, and
10, One final run was made, with no ¢ priori information,
with the orthogonal filter. The diagonal clements of the
final covariance matrices are shown in Table 3.

As can be seen, the two square root filters give essen-
tially the same results. The normal Kalman filter is
not nearly as accurate as the Angstrom-Koepcke-Tung
filter in the first case, although both fail as a priori infor-
mation decreases.

Next process noise was added to the system. The
a priori covariance was taken as 10** times the unit matrix,
and the covariance of the process noise was taken as

108 X1 (km/sec?)®
and

10 X I (km/sec?)?

Diagonal elements of the final covariance matrices are’/

shown in Table 4 for the square root filters. The filters
give essentially equivalent results. The same cases were
tried with the other filters and, although positive diagonals
were obtained in the first case, the numbers were not accu-
rate to even one significant figure.

Clearly, if the system is badly conditioned, the square
root filters give superior results, No marked difference
was found between the two square root filters, The orthog-
onal filter was somewhat more complex to program but
could handle problems with no a priori information.
Furthermore, rank-deficient solutions could easily be ob-
tained, There was little difference in computer time
between the various filters.
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Table 3, Comparison of sequential filters

A priori Filter PO, T X 10° P(2,2) X 10° PIB, X 10 | P, 4 x10" | P55 x10° | P66 X 10°
covariances
a 0.4048820 0.4166330 0.2008347 0.7749189 0.9823329 0.3004011
10° " 0.4033534 0.4156932 0.1907584 0.7751610 0.9786459 0.2941951
‘ 0.4033529 0.4156927 0.1907590 07751611 0.9786449 0.2941994
a 0.4033529 0.4156928 0.1907590 0.7751611 0.9786449 0.2941994
" Negative diagonals
10" b Negative diagonals
' 0.6760298 0.6705581 0.1967947 1.052819 1.640169 0.2942901
" 0.6760305 0.6705590 0.1967947 1.052820 1.640170 0.2942902
' Negative diagonals
10" b Negative diagonals
‘ 0.6760214 0.6705354 0.1967956 1.052758 1.640149 0.2942843
o 0.6760762 0.6706017 0.1967957 1.052867 1.640281 0.2942902
% a 0.6760762 0.6706017 0.1967957 1.052867 1.640281 0.2942902
AKalman,
bAngstrom—Koepcke—Tung.
 Potter.
dHouseholder.
Table 4. Estimation with process noise
“[“n‘:‘/’:;',w Fifter P11 X 10" P(2,2) X 10° PI3,30 X 10" | P4, 4 x 107 | P55 X 10| Pis, 6 x 107
1ot Potter 0.4281827 0.4341234 0.2948340 07594377 0.1066931 0.7257993
Householder 0.4281825 0.4341231 0.2948340 0.7594372 0.1066931 0.7257993
X 10 X 10* X 10* X 107 X 107" X 107
1070 Potter 0.6811936 0.6758202 0.2016849 0.1061979 0.1652994 0.3035435
Householder 0.6811929 0.6758192 0.2016848 0.1061977 0.1652992 0,3035434
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Il. Systems Analysis

SYSTEMS DIVISION

A. ASTRAL: Optimized Low-Thrust Trajectories
Using Approximate Closed-Form Solutions

to the Equations of Motion, W. Stavro and
D. J. Alderson

1. Introduction

Investigators performing analysis of low-thrust tra-
jectories have generally used two approaches to the
problem. These approaches are not alternatives to one
another, but are independent and justifiable pursuits.
The first approach, which is also historically the first, was
to attempt to solve the equations of motion of the space-
craft analytically and thus determine its path. This in-
volved the solution of nonlinear differential equations
using generally some kind of perturbation scheme. The
second approach was to solve the boundary-value opti-
mization problem (where the boundary values are the
initial and final position and velocity of the spacecraft
for a specified mission) and determine the optimal thrust
programs to maximize certain mission parameters. This
generally involved the use of the calculus of variations
and quite extensive numerical techniques.

Basically, the engineering purpose of studying low-

thrust trajectories is to develop a tool to be used in the
design and planning of space exploration missions, From
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this point of view, researchers who followed the sccond
approach (optimization) may be considered to be those
who concerned themselves more intimately with the real
problem of mission design. However, it must be realized
that analysis vsing the first approach has two great ad-
vantages. In the first place, an analytic investigation into
the basic equations ~f motion gives great insight into the
general behavior of such trajectories, as for example,
the determination of the behavior of the osculating
orbital elements. Secondly, the coriputing time needed
to obtain numerical results from the approximate closed-
form solutions is appreciably less than the time needed
to perform numerical integrations of the equations of
motion, thus a computer program which gives approxi-
mate results but is simple and fast would be an extremely
useful tool for the design of low-thrust trajectories if the
approximate results are accurate enough.

A survey of the literature on low-thrust investigations
shows that as these approaches were further developed
and expanded they became 2lmost completely independ-
ent fields of study. For example, intensive work in low-
thrust mission optimization made no use of closed-form
approximate solutions of the equations of motion, and simi-
larly investigators who developed approximate solutions
made no attempt to use these in mission analysis studies.
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ASTRAL is the first attempt to combine both these
ficlds of endeavor in order to obtain a uscful tool to he
utilized in low-thrust mission studics. More specifically,
ASTRAL will use an approximate closed-form solution’
to the differential equations of motion, together with an
optimization scheme, to obtain a program that optimizes
various mission parameters to maximize a low-thrust
payload.

The purpose of this article is to breadly present a
deseription of ASTRAL and to explain the overall struc-
ture of the program and its content. An attempt was
made to stay away from program specifics, such as input
and output format and actual form of the program. These
will be published after the program is checked out and
is in a working condition.

2. Trajectory Analysis

Numerous attempts have been made to solve the dif-
ferential equations of motion of a spacceraft under the
influence of low thrust, These studics ranged in com-
plexity from very simple approximations to very sophisti-
cated perturbation schemes, The most recent method
used to solve these nonlinear equations, which also gave
the best results, is the two-variable asymptotic cxpansion
method, This method was especially suitable because of
the appearance of two time scales (slow time associated
with the changing orbital clements, and fast time asso-
ciated with the motion of the spacecraft) as well as the
small parameter €, which is the ratio of thrust accelera-
tion to gravitational acceleration. Shi and Eckstein
(Ref. 1) used this method to solve the equations of mo-
tion of a spacecraft under the influence of constan:-
thrust acceleration, i.e., approximately a nuclear-electric
propulsion system. All other investigators before them
had also limited their analysis to constant thrust or
constant-thrust acceleration, However, the mission stuaics
presently under serious consideration for outer planet
exploration in the 1970s have solar-electric propulsion
systems. For this system, the magnitude of the thrust
is a function of the distance to the sun since the solar
power decreases as the distance to the sun increases.

Wesseling (Ref. 2) considers the case where the thrust
acceleration varies as the inverse of the square of the
distance to the sun in a heliocentric trajectory, He uses
the two-variable asymptotic expansion procedure and
obtains the first three terms of the asymptotic series. One
of the very interesting results he obtained for such a
thrust behavior is that the eccentricity of the osculating
conic increases, whereas it had been found that for
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constant-thrust acceleration it deereases. This exhibits
the fact that the general hehavior of the trajectory (such
as the variation of the elements) scemed to depend on
the hehavior of the thrust acceleration. Recent studies
on a solar—clectrie power plant show a variation of thrust
acceleration proportional to the inverse of the distance
to the sun raised to a power of approximately 1.4, Pos-
sible improvements to Wesseling's solution to incorporate
this effect are discussed in Subsection 6 of this article.

ASTRAL was initiated here with the purpose of being
a level-1 computer program to he used for solar-clectric
mission studies. A level-1 program is one which is used
in generating the bulk of the ideal performance informa-
tion, and as such must be capable of optimization of
trajectory and spacceeraft parameters. The approach used
is the coupling of Wesseling’s solutions with an optiniza-
tion scheme,

3. PATH Subroutine

The subroutine in the ASTRAL program which cal-
culates the trajectory (ic., where Wesseling's solutions
are programmed) is called PATH.

Wesseling’s analysis makes two important assump-
tions. First, since the method uses a perturbation scheme
on ¢, it is valid only for small values of that parameter,
i.c., low thrust. Of course, the smaller the value of e the
closer his solution approximates a numerical integration,
if everything clse is held constant. Secondly, in order to
obtain higher-order terms, the assumption of small ec-
centricity (same order of magnitude as €) had to be
made. Other conditions are that thrust acceleration
varied as 1/r? (wherc r is the distance to the sun) and
that its dircction is arbitrary but fixed. In checking
PATH out, an attempt was made to determinc how
sensitive the solutions are to various values of eccentricity
and e
“*  two programs on the 1620
computer: (1) AS , whick contained his approxi-
mate solutions, and  JUTRAL, which was a numerical
integration of the eyua..uns of motion to which he com-
pared some of his results. The same process was repeated
for the 7094 computer; both Wesseling’s results and a
numerical integration were programmed. The first step
in checking PATH out was to compare it to the 1620
computer version, Once this was done, the main effort
became to determine how well the asymptotic solution
approximated the numerical integration of the equations
for different values of eccentricity and €,

Wesseling had v

21




g - 1/(2)'#]. Two plots are shown on cach of the graphs:
one showing Wesseling’s solution, the other showng the
numerical integration, Figures Ja and 1b give excellent
approximations to the numerical integration, whercas
Fig, lc gives intolerable errors. Figure 1d is the same as

Figures 1a, 1b, and le show two-dimensional trajec-
tories for an € of 0.1: Fig, 1a for an initially circular orhit,
Figs, 11 and lc for initial cccentricities ¢, of 0.1 and 0.5.
These and othe v test cases shown here were run for a
thrust pointing at an angle of attack of 45 deg [the angle

- 33¢0° O AW W
(a)
s
300°._ 300° 40°
270° 270° 90°
240° 240° 120°
O D NUMERICAL INTEGRATION
—— WESSELING'S SOLUTION
210° 180° 150° 210° 180° 150°
300° 330° o° 30° 60° 300° 330° 0° 30° &0°
(d)}
270° 9 90° 27¢° 90°
240° 120° 240° / 120°
\ \
210° 180° 150° 210° 180° 150°
Fig. 1. Two-~dimensional trajectories: () e,=0, €=0.1; (b} 2, = 0.1, €=0.1;
{c) ¢,=0.5, €=0.1; |d) ,=0.5, €=0.01
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Fig, Ie, except for an € of 0.01, and yiclds a very good
approximation, By studying Figs. la and 1d, the follow-
ing conclusions may be reached:

(1) Excellent appre gimations are obtained when the
initial cccentricity and e are of the order of 0.1 or
smaller.

(2) For cases of high cccentricity (about 0.5), the e
must be decrcased to about 0.01 to obtain good
results. This scems to contradict Wesseling's as-
sumption that initial cccentricity has to be of the
saime order of magnitude as e.

Figure 2 shows time plots for € - 0.1 and initial «c-
centricities of 0 and 0.1, From these plots, we note that
excellent approximations are obtained for about the first
half revolution, after which the error increases trermend-
ously, especially for the 0.1 initial cccentricity case, An
attempt will be made to investigate these results in order
to improve the latter approximations,

Many other runs were made and checked, and, in
general, it is concluded that PATH now gives very good
approximations to the trajectory of a low-thrust space-
craft whose thrust varies as 1/, when the initial cecen-
tricity and € are small; and for higher ccoentricities,
results are still good if € is small enough,

4. Optimization Method

In general, a function-maximizing or optimization
method involves the use of a sct of one or more points
in a parameter space. These points may be restricted to
lic within a certain portion of the parameter space, or
such constraints may be absent. In cither case, the posi-
tions and function values, and possibly also function
derivative values. of the point or points in the set are
used to produce a new noint set for further investigation,
The resulting sequence of point sets hopefully converges
upon the desired optimal location in the parameter space,
thus maximizing the given function, subject to the speci-
fied constraints if there are any.

In the case under consideration, the partial derivatives
of the spacecraft payload with respect to the trajectory
parameters cannot be generated in a more efficient man-
ner than by numerical differences, so methods directly
using function derivative values are unlikely to be useful,
Further, the problem is extensively involved with con-
straints of all kinds, including some that produce
considerable difficulties for methods that make even
indirect use of function derivatives. As opposed to these
gradient methods, there are the direct search methods,
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The most cffective of these is Box’s “complex” method
(Ref. 3), and this has been adopted as the basic optimiza-
tion method in the ASTRAIL program.

Maximizing a fmction of a single variable is quali-
tatively as well as quantitatively casier than performing
the same task with two or more variables, As a resalt,
many multidimensional optimizing methods wct by sclect-
ing an appropriate onc-dimensional subspace of the
parameter space and applying a suboptimization process
to it. Thus, gradicnt methods often investigate the line
through tl' > point under consideration along which the
function is changing most rapidly at the point—the line
defined by the gradient vector of the function at the
point. The complex method also uses this dimensional
reduction technique, though without reference to deriva-
tives. If the parameter space to be dealt with has n
dimensions, n 1 or more points in the space are placed
in a sct. These points form the vertices of a polytope or
complex. the n-dimensional equivalent of a polygon or
polyhedron,

The one-dimensional subspace chosen for further in-
specti m is that connecting one of the points in the sct
with the centroid of the other points. This line is ana’yzed
cither by a simple bounded exponential search as sug-
gested by Box or by a method involving successive quad-
ratic approximations. If a point is found with a higher
function value than the original defining point, it replaces
the original point in the complex set. The first choice
of defining point is the one with the lowest function
value, but if it is not veplaced by a point with higher
function valuc than at least one point in the complex
set, then all the other points are tried in order of increas-
ing function value. If none of the points can produce an
increase in function value, the sequence terminates,
ideally with all of the poists coinciding at the optimum.

The initial complex set is formed from any guesses or
estirdtes of the ogtimum that may be available, filled
in by randomly chosen points.

“onstiamts come in two forms: equality and inequality,
and in a wide range of degrees of complexity that can
be lumped into two levels: explicit and implicit, the dis-
tinction as far as the present case is concerned being
that it is much easier to determine whether a given point
satisfies an explicit constraint than it is to evaluate the
function to be maximized, while the same is not true of
an implicit constraint. The low-thrust trajectory optimiza-
tion problem involves all four combinations of constraint

types.
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Explicit inequality constraints arise, for example, from
the tact that a negativ. value for the Tength of any of
the ares into which the trajectory is divided would be
physically meaningless. They are met by checking cach
point considered before evaluating the function, and
rejecting the point unless all such constraints are met.
These constraints turn out to provide upper and .ower
hounds for all of the variables that constitute the param-
cter space.

There is exactly one explicit equality constraint, ox-
pressing the tact that the lengths of the trajectory ares
must add up to the specified full length of the trajectory.
It is eBminated by removing the length of the last tra-
jectory arc from the parameter space and automatically
giving it the value required to sutisfy the equality con-
straint, As a result, the condition that the length of the
last trajectory are be non-negative becomes more compli-
cated but remains ac explicit inequality constraint,

Implicit incquality constraints arise because the path-
generating process can fail in any of the ares of the
trajectory, For etample, the trajectory can proceed along
a hyperbolic asymptote and thus never reach the ecliptic
longitude specified for the end of an arc. These con-
straints are satisfied by checking at each point cousidered
during evaluation of the function, and rejecting -2 point
(by assigning a very large negative value to the func-
tion) unless all such constraints are met.

The implicit equality constraints are the most trouble-
some, They are produced by the requirement that position
and time at the end of the trajectory possess specified
values. They are dealt with by modifying the function
to be maximized, subtracting “penalty” functions of the
crrors in final position and time from the payload. By
proper choice of parameters in the penalty fuictions, the
optimizing process can be presented with a problem that
amounts to first finding a solution to the constraint
equations and then maximizing the payload subject to
the constraints,

5. The Payload Formulas

The payload of the spacecraft is given by the follow-
ing formulas:

Alpl = Al/ [Ag eXp (”'dV-_:/C:) - Bz],
M] Aln - Alpp b All)

_ —1 [*eg.a’rros¥
M, [1 exp (Is,,g. /;o V. lb)]
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M,, = on

€ule Lopls

M, = A,exn(— dV,/C,) — B,, A, — B =M,

Refer to Table 1 for definition of symbols.

6. Present Status and Future Plans

The complete ASTRAL program is presently in a
checkout phase. As mentioned in Subsection 3, the PATH
subroutine has already Leen checked out and its limita-
tions identified. The next step is to check out the com-
plete program with the exclusion of the optimizer. This
is presently being done by simulating an ASTRAL tra-
jectory on Carl Sauer’s integrating low-thrust program’
and making an initial check on the basic parameters. It
will also determine the effect of assuming an inverse-

*This program was used in recent Jupiter mission studies at JPL.

square thrust acceleration and constant mass of the space-
craft,

The next step in the checkout schedule will be to take
a Sauer optimum trajectory and attempt to duplicate it.
Once this is done, numerous ASTRAL runs will be gen-
erated in the vicinity to hand-pick an optimum; then a
check will be made to see if ASTRAL will get the same
optimum using the optimizer. This procedure will be
followed to check out the optimizing scheme. Once past
the checkout phase, ASTRAL will be ready to be used
as a level-1 program.

A major extension to ASTRAL will be done later to
implement it with William Stavro’s solutions for arbitrary
thrust-power laws. This is a study wuich investigates the
general case where the thrust acceleiaiion can vary as
the inverse of the distance to the sun ruised to some
arbitrary power o. Thus, the value a = 0 will signify
constant-thrust acceleration (an approximation to the

Table 1. Nomenclature

A,;, B, C, constants describing initial high-thrust
maneuvers
A,, B,,C, constants describing final high-thrust

maneuvers
a 1 AU (149,597,892 km)

dV, velocity change in initial high-thrust
maneuvers

dV, velocity change in final high-thrust
maneuvers

g. acceleration of solar gravity at 1 AU
(0.593 cm s72)

g: standard acceleration of earth gravity
(980.665 cm 57?)

I, specific impulse of low-thrust propulsion
system

effective exhaust velocity of low-thrust
propulsion system

Ispgs

M, spacecraft mass just before final high-
thrust maneuver (if any), e.g., insertion
into orbit about target planet

M; spacecraft mass at parabolic orbital sta-
tus relative to launch planet during in-
itial high-thrust maneuver

M, propellant mass
My payload mass
M,, powerplant mass

M, spacecraft mass just after initial high-
thrust maneuver, e.g., chemical boost
from earth orbit

rdistance of spacecraft from sun

rcos¥/Ve (d®/dt)™, reciprocal of time derivative

of &

Vs ecliptic longitude component of space-
craft velocity

o powerplant specific mass at 1 AU

ratio of spacecraft thrust acceleration to
acceleration of local solar gravity
€g.a?/r* thrust acceleration of spacecraft
€, ratio of spacecraft thrust acceleration to
acceleration of local solar gravity at 1 AU

A low-thrust propulsion system efficiency
ecliptic longitude of spacecraft
®, final value of ¢
&, initial value of ®

¥ ecliptic latitude of spacecraft
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nuclear-electric case), « =2 will parallel Wesseling’s
analysis, and « = 1.4 will reflect recently proposed solar—
electric propulsion systems to be used for missions to
Jupiter.
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B. An Earth-Venus—Mercury Mission
Opportunity in 1978, F. M. Sturms, Jr.

In a previous article (SPS 37-39, Vol. 1V, pp. 1-5), it
was reported that no favorable Earth-Venus-Mercury
opportunity existed in 1978, and in particular that no
energy match at Venus for the Earth-Venus and Venus—
Mercury trajectory legs was possible for launch energies
C, of less than 21 km?*/s% At the time these results were
reported, the Atlas-Centaur vehicle was unable to inject
significant payloads (greater than 1000 Ib) to energies

higher than about 21 km*/s*, and was the rationale for
using this constraint. Larger boost vehicles then con-
templated could easily deliver large payloads on direct
Mercury missions, which roquire launch energies of

about 50 km*/s* (Ref. 1).

More recently, uprating of the Atlas-Centaur vehicle,
and the entry of a number of intermediate-size Taunch
vehicles into the mission planning picture, require the
consideration of higher launch energies. This fact has
been reported by A. A. VanderVeen of Bellcomm, Inc.,
who has determined some preliminary trajectory char-
acteristics.”

High-energy Earth-Venus—Mercury trajectories have
been generated using JPL’s multiple-planet conic pro-
gram SPARC.*! Figures 3-8 show some of the more
important trajectory parameters. Figure 3 shows the re-
gion of possible trajectories on a Venus arival date
versus Earth launch date grid. Figures 4-8 show the

*Preliminary Results of an Attractive Earth-Venus-Mercury Mission
in 1978, Pellcomm, Inc., Washington, D.C., Oct. 9, 1968 (internal
memorandum).

*Joseph, A. E., and Richard, R. J., Space Research Conic Program,
July 1966 (]JPL internal document).

‘Derderian, M., Space Research Conic Program, Phase 111, Apr. 1968
(JPL internal document).
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following quantities plotted versus Earth launch date,
using a constant Venus arrival date as a parameter:

(1) Launch energy C..

(2) Altitude of closest approach h at Venus (Venus
radius taken as 6080 km).

(8) Mercury arrival date.
(4) Hyperbolic approach velocity at Mercury.

(5) Angle between arrival asymptote an¢ Mercury-
Sun vector (determines lighting for Mercury pho-

tography).

A launch energy of 35 km?/s? will produce an adequate
launch period, Table 2 shows current payload estimates
for several launch vehicles for energies of 35 and 50
km?/s?. These performance values were obtained from
Ref. 2, except for the SLV-3X/Centaur value,

Using the values in Table 2, the SLV-3C/Centaur
and Titan 3C vehicles appear marginal for the 1978
Venus-Mercury mission, The addition of a Burner II
stage to these vehicles increases the payload to where
both the indirect 1978 Venus-Mercury and direct Mer-
cury missions are attractive. The SLV-3X/Centaur
vehicle is a possible choice for the Venus-Mercury mis-
sion in 1978,
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Predicted launch-vehicle performance values change
frequently, thus affecting the attractiveness of given
missions. The values given above indicate that serious
consideration should now be given to the 1978 Earth-
Venus-Mercury mission opportunity in comparison to
more favorable but earlier Venus—Mercury opportunities,
and in comparison to direct Mercury missions.

References

. Clarke, V. C. Jr., et al., Design Parameters for Ballistic Inter-
planetary Trajectories, Part II. One-Way Transfers to Mercury
and Jupiter, Technical Report 32-77. Jet Propulsion Laboratory,
Pasadena, Calif., Jan. 15, 1966.

. Mission Planners Guide to the Burner 1I, Report D2 82601-5,
The Boeing Co., Seattle, Wash., Apr. 1968.

Table 2. Launch vehicle payloads for two launch

energies
Payload for Payload for
L b vohicl Ca= 35 km*/s’ Ca = 50 km*/s’
aunch vehicle {1978 Vanus—Mercury), | (direct Mercury),
b Ib

SLV-3C/Centaur 750 50
$LV-3C/Centaur/Burner 11 1400 1000
Titan 3C 800 0
Titan 3C/Burner I 2250 1500
SLV-3X/Centaur® 1100 200

aWilliams, A. N., launch Vehicle Data Book, Avg, 30, 1948 (JPL internal
memorandum).
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C. Trajectory Analysis of a 1975 Mission to

Mercury via an Impulsive Flyby of Venus,’
R A. Wallace

1. Introduction

The concept of using gravitational fields to signifi-
cantly alter the energy and direction of interplanetary
trajectories is not a new one. In 1963, M. A. Minovitch
proposed several interesting interplanetary missions using
this multiple-planet flyby concept (Ref. 1). The advan-
tages of this form of mission are the savings in launch
energy and the increase of data return associated with
the “two planets for the price of one” idea. It is not sur-
prising, therefore, that a great deal of interest has been
generated in multiple-planet flyby missions and, in par-
ticular, missions to Mercury via Venus in the 1970,
Direct ballistic trajectories to Mercury generally require
launch energies of 45 km?/s* or more, while multiple-
planet trajectories to Mercury are available which require
less than 30 km?/s2,

There are six attractive opportunities for Earth-Venus-
Mercury missions during the remainder of the century;
these are hsted in Table 8. An attractive opportunity is
one for which either an Atlas/Centaur or Titan III launch
vehicle can be used to launch a payload of more than
800 b (ie., corresponding to an upper limit of launch
energy of 33 km?/s?). Although the 1970 and 1973 oppor-
tunities are excellent, they may not be available because
of program considerations. The next opportunity is in
1975, but is plagued with very low Venus closest-approach
altitudes. The study summarized here investigates the
feasibility of using a small propulsive assist at Venus to
allow reasonable Venus flyby altitudes and thereby in-
crease the attractiveness of the 1975 opportunity.

Results of the study are presented in three parts.
First, a very brief discussion is given on the general
single-impulse flyby analysis which permits the analyst
to investigate in detail the impulse requirements of
multiple-planet trajectories utilizing propulsive assist.
Sccondly, an efficient procedure is outlined for the appli-
cation of the above analysis to the 1975 Earth-Venus-
Mercury mission. The final subsection is devoted to the
mission design and analysis for the 1975 Earth-Venus—
Mercury opportunity,

2. Single-lmpulse Flyby Analysis

The analysis used is simple and can be applied to any
multiple-planet trajectories where propulsive assist may

*This article is a summary of Ref. 2,
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Table 3. Earth-Venus—Mercury mission opportunities
(ballistic flyby)

Venus closest-
Launch year Launch energy, approach altitudes,
km®/s* kin
1970 14 3000
1973 19 5000
1975 21 Less than 700
1982 24 2000
1994 24 1400
1998 16 3600

help in raising closcst approach altitudes or taking ad-
vantage of particular interplanetary trajectory character-
istics, such as reduced flight time. The analysis uses three
input control parameters:

(1) Launch and arrival dates (fixes the approach and
departure asymptotic velocity vectors).

(2) Closest approach altitude.

(8) Maneuver radius.

These parameters are thought to be the most practical
choice of control variables for operating a multiple-planet
mission requiring propulsive assist. They also make up
a minimum set required to uniquely determine the tra-
jectories at encounter (Fig. 9). The analysis could be
carried out two-dimensionally because of the principal
constraint of requiring the trajectorics to contain the two
determining asymptotic velocities. Details of the solution
are given in Ref. 2,

3. Application of Single-Impulse Flyby Analysis

The single-impulse flyby analysis was applied to the
region of the 1975 Earth-Veunus-Mercury opportunity
which exhibited relatively low launch energies and maxi-
mum Venus closest-approach altitudes. In a perliminary
study, certain factors became evident:

(1) The Venus arrival time is very important in obtain-
ing low ‘inpulse maneuvers (sensitivity: 20 m/s/h).

(2) The AV is relatively invariant with maneuver radius
for optimum choice of Venus arrival time. (For
non-optimal times, AV could vary as much as % of
its minimum value.)

The AV sensitivity with Venus arrival time is explained
by the fact that the Venus closest-approach altitude was
kept constant, It was found, however, that the AV sensi-
tivity to closest-approach altitude is also quite high,
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Fig. 9. Encounter trajectories in orbit planet

about 60 m/s for every 100-km change in altitude. Thus,
the AV sensitivity to Venus arrival time could be softened
by changing the Venus flyby altitude with Venus arrival
time. It was decided, however, that a minimum acceptable
altitude of 1000 km should be used throughout the study.
If further decreases were allowable, the savings of 60 m/s
for every 100-km decrease could be realized up to a
point where too much trajectory bending results and AV
increases.

In the preliminary study, AV was found to be very
insensitive to maneuver radius for the optimum choice
of Venus arrival times. This is because the two encounter
orbits, approach and departure, are almost identical and
the velocity differences are almost constant with maneu-
ver radius. One orbit can be thought of as a perturbation
of the other because the impulse required is small com-
pared to the orbital velocities (9 to 13 km/s). For non-
optimum choice of Venus arrival time, the angle between
the two orbits is larger than for the optimum arrival
time, although the orbits are almost identical in other
respects. The above observations are not applicable at
periapsis where the velocity differences are most pro-
nounced.

Since AV is almost constant with change in maneuver
radius for optimum Venus arrival times, attention during
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the rest of this study will be restricted to mancuvers
performed on the asymptotes (i.c., at about encounter
plus or minus several days). There are four major ad-
vantages that result from such a policy:

(1) The required impulse cau be combined with one
of the error-correction maneuvers, resulting in
smaller exccution errors and greater reliability for
fewer manecuvers.

(2) The Venus encounter experiments could be given
full operational consideration and not complicated
by a mancuver.

/v

(3) A continuous tracking data fit could be acquired
throughout encounter, reducing orbit determina-
tion errors for the post-encounter error-correction
mancuver.

(4) The impulse was found to be smallest at large dis-
tances from Venus for the final design trajectories.

Cc:: lering these points, the remainder of the discussion
is confined to results concerning asymptotic maneuvers.

To define a mission, design charts are required which
will clearly show the tradeoffs in the important param-
cters involved. In the construction of design charts, the
first step is to optimize Venus arrival time. Figure 10 is
an example of the many plots requirec in the optimiza-
tion procedure.

800 T

MANEUVER ON DEPARTURE
ASYMPTOTE

EARTH LAUNCH DATE:
JUN 1%, 1975

CLOSEST APPROACH
ALTITUDE: 1000 km

600 \

n \ 19
400 /
16
15

AV, m/s

/ 18
MERCURY
ARRIVAL DATE, 17
NOV 1975
12 \ X
200 /

9/6 97 9/8 99 9/10
VENUS ARRIVAL DATE, 1975

Fig. 10. Maneuver impulse AV vs Venus arrival date
{(Mercury arrival date varied)
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Design charts were constructed for mancuvers per-  Venus arrival time. Figure 11 is the design chart for
formed on both the approach and departure asymptotes  manecuvers performed on the departure asymptote with
with Venus arrival time and launch energy as parameters  launch energy as an overlay. It was found that mancuvers

overlayed on the basic AV contour chart. Note that all  performed on the departure asymptote resulted in gen-

points used in the design charts are for the optimum crally lower AV’s than those on the approach asymptotes,
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Fig. 11. Earth=Venus—~Mercury mission design chart: launch energy C; and maneuver impulse AV
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This is duc to the departure speeds being generally
higher than the approach speeds (a slower speed at en-
counter results in greater bending of the trajectory).
4. 1975 Earth-Venus—Mercury Mission Design

Using Fig. 11, the basic design chart, two missions
were designed: one requiring low launch energies, the
other, low propulsive assist at Venus. There is a definite
launch vehicle and AV tradeoff available. 'The low launch-
cnergy mission design is characterized by:

(1) Launch energy < 21 km*/s* (Atlas/Centaur),

(2) AV < 350 m/s.

(3) 20-day launch period (May 27 {0 June 186, 1975).

(4) Mercury arrival time: Nov, 14, 1975,

The low propulsive-assist mission is characterized by:
(1) Launch energy < 30 km*/s (1'itan 11I).
(2) AV <100 m/s.
(3) 20-day launch period (June 12 to July 2, 1975).
(4) Mercury arrival time: Nov. 13, 1975: 12 h.
Note the existence of two attractive mission designs, one
requiring more onboard propulsion, but a smaller launch
vehicle. Both missions require relatively small impulses

when measured against the total AV usually required on
ballistic multiple-planet missions.

As observed in the preliminary study, AV, as shown in
Fig. 12 for the low propulsive-assist mission design, is

180 T T T T T T T T
MANEUVER ON DEPARTURE TRAJECTORY
160 VENUS CLOSEST APPROACH ALTITUDE: 1000 km |
MERZURY ARRIVAL DATE: NOV 13, 1975, 12 h
VFNUS ARRIVAL DATE CHOSEN TO MINIMIZEAV
140 —— LAUNCH ENERGY < 30 km2/s2 -
e S EARTH LAUNCH DATE, 1975
A — JUN 12
120
“
}, 100
3 N ] Jut 2
80 T[T JUN16
80
w0l JUN 21 |
JUN 26
20

6 8 10 2 14 6 18 20 22 24 6 28
MANEUVER RADIUS 1, km x 10°

Fig. 12, Low propulsive-uassist mission design:
maneuver impulse AV vs maneuver radius r
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almost constant with mancuver radius, being slightly
higher near encounter. The characteristic of AV being
higher at encounter is due to the dominating angulay
momentum or orientation requirements,

incounter conditions at Venus result in Earth occulta-
tion for all launch days in both mission designs. Figure 13
is a plot of the Venus occultation regions for a repre-
sentative launch day. Note the 3¢ error cllipse resulting
from a 0.1-m/s spherically distributed midcourse cxecu-
tion error at launch - 5 days. The crossing of this ellipse
into the impact zone indicates that a pre-encounter error-
correction muneuver is required {(a common requirement
for multiple-planct missions), and that reducing the
Venus closest-approach altitnde much below 1000 km
may be impractical.

Launch conditicns for both missionr designs are very
good. The characteristics are:

(1) Launch azimuth corridors of 90 to 114 deg.
(2) Launch windows > 2% h.

(3) Parking orbit coast times: 12 to 16 min (compatible
with both the Atlas/Centaur and Titan III launch
vehicles).

(4) Injection over mid-Atlantic to South Africa (rea-
sonable near-earth tracking requirements for the
Air Force Kascern Test Range).

For any study which is dependent on conic analysis, it
is important that an accurate check be made on the final
results. A comparison of the conic results with the pre-
cision integrated data is given in Table 4. The integrated
data was supplied by the SPACE trajectory program
(Ref. 8), a program used with a high degree of accuracy
on actual missions to Mars, the moon, and Venus, Errors
of between 8 and 13 m/s in AV are shown and point to
tile accuracy which may be realized with conic analyses
if relative values (e.g., velocity differences) are required
rather than absolute values.
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Table 4. Conic results vs integrated trajectory program data for various launch dates

.

May 27,1975 June 11, 1975 July 2, 1975
Parameter
Conic Integrated Conic Integrated Conic Integrated

b, km 10,333.96 10,333.14 10,079.9 10,081.89 9766.6 9767.3
0, deg 353.91 353.91 357.00 357.01 0.42 0.43
VHP, km /s 9.0100 9.1102 9.4529 9.5586 10.0815 10.2069
VHL, km/s 9.2155 9.3370 9.5282 9.6373 10.1075 10,2289
rp, km 7080.0 7079.7 7080.0 7081.4 7080.0 7080.4
i, deg” 8.62 13.10 4.05 1.43 1.48 94,44
1, deg" 3.420 3.410 3.406 3.403 3.436 3.436
Q, deg” 31,92 30.72 35.60 36.21 246,83 20915
AV, m/s 368.8 360.5 131.0 122,9 79.8 66.9

2Post-maneuver,

bb = impact parameter, hyperbollc semiminer axis; © = targeting angle in 8-plane; VHP = approach asymptotic speed on vacorvacted tralectory; YHL = departure asymptotic
speed required on departure trajectory; rp = closest approach distance; i = orbital inclination to the echiptlc, Venus-centered; ! = hellacentric inclination to the ecliptic of
Venus-Mercury trajectory; 2 = longltude of the oscending node; AV = required Iimpulse.
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3. White. R. I, et al., Space Single Precision Cowell Trajectory
Program, "Technical Memorandum 33-198. Jet Propulsion Lab-
oratory, Pasadena, Calif., Apr, 13, 1965,

D. Missions to the Quter Planets, r. A. Wallace

The 19753 to 1980 time period will afford an unusually
favorable opportimity to launch missions o explore all
ol the outer planets. During this time period, the planctary
geometries are such that rare multiple-planet missions
involving all the major planets are possible. Such oppor-
tunitics will not occur again for almost two centuries,
This article expands on opportunities previously identi-
fied (8PS 37-33, Vol. 1V, pp. 12-23) to show cnergy re-
quirements and other churacteristics for realistic lammch
periods.

Table 5 is o summary chart of cleven missions to the
outer planets with launch opportunities from 1976 throngh
1979." A comprchensive plan to explore all of the outer
plancts of the solar system could be constructed from
this chart. There are four types of missions included:

(1) Single-planct missions: dircet missions to Saturn,
Uranus, Neptune, and Pluto (four missions).

(2) Two-planct mission: Earth-Jupiter=Pluto (one mis-
sion).

(3) Three-planct missions (grand tour minus Satrovn):
Earth-Jupiter-Uranus-Neptune (two nussions),

(4) Four-planct missions (grand tour): Earth-Jupiter—
Saturn-Uranus-Neptune (four missions),

Each of the eleven missions sho.wn in Table 5 have heen
designed with consideration given to launch energy, time
of flight, launch period, planctary flyby altitudes, and
launch conditions.

The Rings of Saturn may present a formidable obstacle
to spacecraft flying by that planct at altitudes less than
150,060 km. The present physical model of the Rings is
much in doubt, however, and trajectorics passiug be-

‘Earth-Jupiter missions are discussed in Refs. 1 and 2 and in JPL
Engineering Planning Document 358, which provides data on
launch opportunitics from 1974 to 1981. The grand tour (four-
planet) missions were designed by L. Kingsland (Ref. 3). The
other missions in Table 5 are from unpublished material by the
author, All missions but two were designed with the aid of a patched
conic computer program SPARC [Derderian, M., Space Research
Conic Program, Phase I11, April 1968 (JPL Internal Document)].
The data for the two 1977 grand tour (four-planct) missions were
computed with the aid of a precision integrating program SPACE
{Ref. 4).
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tween the top of the atmosphere and the interior Ring
or passing at altitudes greoter than 70,000 km may be
possible, The 1977 interior Ring passage grand tour mis-
sion (1977 Jupiter-Saturn interior Ring~Uranus—Neptune)
would be most desirable, 11 a Satarn flyby altitude of
130,000 km were required, then a flight duration of 13 vr
would yesult. TH two spacecraft were available and the
risks of catastrophic impact with the Rings of Saturn
were lonnd to be high for desirable grand tour missions,
then one of the three-planet missions might be used in
addition to a grand tonr,

There is no question that a mission to Saturn, Uranus,
Neptune, or Phito shonld be flown with the aid of the grayv-
itational ficld ol Jupiter and/or Saturn. The 1977 Earth-
Jupiter=Pluto opportumity is the hest of five possible
beginning in 1975 and ending in 1979 (Ref. 3). There are
Larth=Saturn—Pluto missions available, but the launch
energy is 10 km=/s7 or more, Lamch energies for direet
miciene to Saturn begin to deerease in 1980 until in
1955 v unch energy of 130 km:/s* is suflicient for a
15-day raunch period.

A sample plan to explore the outer plancts by Taunch-
ing missions before 1980 might be the following:
(1) 1977 grand tour (interior Saturn Ring passage).

(2) 1978 grand tour minus Saturn.

Alternate missions in case of launch failure might be:
(1) 1978 grand tour (exterior Saturn Ring passage).

(2) 1979 grand tour minus Saturn.
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Table 5. Missions to the outer planets

1976 1977 1977 1978
Jupiter— | Jupiter— | Jupiter- | Jupiter-
7 T7~
Saturn Saturn Saturn Saturn JJ 9“: J: qi::r 1977 1979 1199778 1977 1976
Characteristics inferior | interior | exterior exterlor P P Jupiter~ | Saturn Neptune Pluto
X Uranvs— | Uranus— Urarys
Ring- Ring~ Ring~ Ring— Pluto {direct} (direet) | {direct)
Neptune | Neptune [direct)
Uranys— | Uronus— | Uranus— | Uranus-
Neptune | Neptune | Neptune | Neptune
Launch period, days 15 15 15 15 15 15 15 15 15 15 15
Marimum launch energy 104 120 160 108 110 110 110 149 139 150 180
required, km?/s*
Capability for Titan i1l /Centaur 1400 780 1530 1250 1190 1190 1190 140 150 0
{spacecraft weight; 114-deg -
azimuth), Ib*
Capability for Titan i11/Centaur 1380 1800 1620 1580 1580 1580 900 930 700
Burner 11 1440 (spacecraft -
weight; 114-de azimuth, Ib*
Maximum declination at launch 14 27 33 33 32 27 28 37 7 4 26
{absolule value), deg
Jupiter encounter
Flight time from launch, days 561 511 652 593 564 579 551
Flyby altitude, km 16,000 | 212,000 | 622,000 | 1,600,000 | 62,000 { 560,000 | 235,000
(Jupiter surface radivs) {0.2) (3.0) (8.8) {22.5) {0.9) (7.8) {3.3)
Communication distance, km 675 438 900 767 719 749 673
X 10
Safurn encounter
Flight time from launch, 1363 1095 1394 1240 1255
days {yr) (3.7) (3.0) (3.8) (3.4) {3.4)
Flyby altitude, km 8,000 6,000 75,000 80,000 - - - Open - - -
{Saturn surface radius) (0.1) {0.1) {1.2) (1.3) 1310
Communication distance, 1277 1562 1453 1321
km X 10°
Urrinus encountar
Flight time from launch, 2798 2342 2945 2764 2293 2286 3092
days (yr} (7.7 (6.4) 8.1) (7.6) {6.6) (6.3) (8.5)
Flyby altitude, km 22,000 16,000 | 86,000 121,000 22,000 41,000 - - Opean - -
{Uranus surface radivs) (1.3) {0.7) (3.8) (5.1) {0.9) (1.7) 2709
Communication distance, 2781 2910 2900 17 2972 2833
km X 10"
Neptune encounter
Flight time from launch, 3894 3372 4100 4030 3503 3599 6209
days {yr) {10.7) (9.2) {11.2) {11.0) (9.6) (9.9) _ - _ {17.0)
Flyby altitude, km Open Open Open Open Open Open Open
Communication distance, 4519 4613 4587 4642 4440 4457 4659
km X 10°
Pluto encaunter
Flight time from launch, 3500 15,231
days {yr) (9.6) (41.7)
Flyby allitude, km Open Open
C ication dist A 3919 4934
km X 10°
%), Long, private commuynication,
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